§ 52.136

in the same manner and in the same number of copies as provided in 10 CFR 50.30 and 52.3 for license applications.

(c) The fees associated with the filing and review of the application are set forth in 10 CFR part 170.

§ 52.136 Contents of applications; general information.

The application must contain all of the information required by 10 CFR 50.33(a) through (d) and (j).

§ 52.137 Contents of applications; technical information.

If the applicant seeks review of a major portion of a standard design, the application need only contain the information required by this section to the extent the requirements are applicable to the major portion of the standard design for which NRC staff approval is sought.

- (a) The application must contain a final safety analysis report that describes the facility, presents the design bases and the limits on its operation, and presents a safety analysis of the structures, systems, and components and of the facility, or major portion thereof, and must include the following information:
- (1) The site parameters postulated for the design, and an analysis and evaluation of the design in terms of those site parameters;
- (2) A description and analysis of the SSCs of the facility, with emphasis upon performance requirements, the bases, with technical justification, upon which the requirements have been established, and the evaluations required to show that safety functions will be accomplished. It is expected that the standard plant will reflect through its design, construction, and operation an extremely low probability for accidents that could result in the release of significant quantities of radioactive fission products. The description shall be sufficient to permit understanding of the system designs and their relationship to the safety evaluations. Items such as the reactor core, reactor coolant system, instrumentation and control systems, electrical systems, containment system, other engineered safety features, auxiliary and emergency systems, power conver-

sion systems, radioactive waste handling systems, and fuel handling systems shall be discussed insofar as they are pertinent. The following power reactor design characteristics will be taken into consideration by the Commission:

- (i) Intended use of the reactor including the proposed maximum power level and the nature and inventory of contained radioactive materials:
- (ii) The extent to which generally accepted engineering standards are applied to the design of the reactor;
- (iii) The extent to which the reactor incorporates unique, unusual or enhanced safety features having a significant bearing on the probability or consequences of accidental release of radioactive materials; and
- (iv) The safety features that are to be engineered into the facility and those barriers that must be breached as a result of an accident before a release of radioactive material to the environment can occur. Special attention must be directed to plant design features intended to mitigate the radiological consequences of accidents. In performing this assessment, an applicant shall assume a fission product release 9 from the core into the containment assuming that the facility is operated at the ultimate power level contemplated. The applicant shall perform an evaluation and analysis of the postulated fission product release, using the expected demonstrable containment leak rate and any fission product cleanup systems intended to mitigate the consequences of the accidents, together with applicable postulated site parameters, including site meteorology, to evaluate the offsite radiological consequences. The evaluation must determine that:
- (A) An individual located at any point on the boundary of the exclusion area for any 2-hour period following the onset of the postulated fission

⁹The fission product release assumed for this evaluation should be based upon a major accident, hypothesized for purposes of site analysis or postulated from considerations of possible accidental events. These accidents have generally been assumed to result in substantial meltdown of the core with subsequent release into the containment of appreciable quantities of fission products.